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The learning task was to predict gene localization in the cell. There are 15 locations ranging from 

mitochondria to plasma membrane, with a default error rate of 0.57. In addition to gene location, each 

gene has 13 boolean attributes indicating gene function. Each gene may have as many as six functions. 

For non-collective models, we used relational Bayesian classifiers (RBCs) [13] to predict gene location 

given the function attributes. The Intrinsic model considered the 13 function attributes on the genes 

themselves. The R1 model added another 13 function attributes for genes one link away (through 

interactions) for a total of 26 attributes. The R2 model then added another 13 attributes for genes two 

links away, for a total of 39 attributes. For collective models, we used relational dependency networks 

(RDNs) with RBCs to represent the component conditional probability distributions. The CI model 

considered the location attribute of genes one link away, in addition to the 13 function attributes of the 

genes in isolation. The RCI model added in the 13 function attributes for genes one link away for a total 

of 27 attributes. The RDNs used 250 Gibbs iterations and all models used Laplace correction for zero- 

values. 

To compare the five approaches, we evaluated zero-one loss over ten-fold cross validation trials. 

We report average error over the ten folds and use two-tailed, paired t-tests to assess the significance of 

the results. 
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For example, consider a data graph with a regular structure of n2 objects arranged in an n × n 

lattice. Each object in the lattice links to each of its immediate neighbors. With the exception of 

objects along the outer boundary, each object links to four others positioned above, below, left, 

and right. All links are undirected. Each object is characterized by a set of variables that includes 

a single probabilistic variable C (a class label) and several other variables Ai (one or more 

attributes) whose values are known with certainty. The task is to construct a joint model of the 

probability distribution over all the values of the class labels. 

REVIEW OF LITERATURE 

Intrinsic — For a given object, the Intrinsic model estimates the joint distribution of the class 

label and attributes on that object. It assumes that objects are i.i.d., and thus corresponds to 

traditional models used in many knowledge discovery applications. The model is depicted 

graphically in figure 1a using the plate notation common in the graphical modeling community. 

The inner box, along with the edge connecting A and C, indicates that m different versions of 

node A (corresponding to m attributes Ai) each depend on C. The outer box indicates that the 

model creates N different versions of the network, each containing a single node C. For example, 

this model would indicate that the words on a web page (the attributes Ai) depend only on the 

topic of that page (C) and are independent of the topic and words on any other page. 
 

Figure 3.16: Relational models 
 

Relational 1 (R1) — The model R1 is a simple relational model indicating that the attributes of 

an object depend on the class label of that object as well as the class labels of objects one link 

away. Figure 1b shows this model using a modified plate notation in which the integer within the 

diamond-shaped annotation (“1”) indicates the graph distance of neighboring objects and the 

multiplier on the edge (“4x”) indicates the number of such neighboring objects. The path of the 

annotated edge outside the outer box emphasizes the dependence on the class labels of adjoining 
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objects. Here, the value of each Ai depends on five different parents C, four of which are from 

neighboring objects. For example, this model would indicate that the words on a web page 

depend on the topic of that page and the topics of four adjoining pages. 

Relational 2 (R2) — A somewhat more complex relational model R2 indicates that the attributes 

of an object depend on the class label of that object and the class labels of objects up to two links 

away (Figure 1c). 

None of these three models allows interdependence among class labels, which is a prerequisite 

for collective inference. We examine two additional models that do allow for such dependence: 

Collective Inference (CI) — The model CI, shown in figure 2a, provides the same type of 

dependence as Intrinsic, but adds dependence between the class label of an object and the class 

label of adjoining objects. This is equivalent to specifying that the topics of web pages depend on 

those of adjoining pages (and also determine the words on the page). 

Relational Collective Inference (RCI) — The model RCI, extends the R1 model by adding 

dependence among class labels of neighboring objects one link away. 

These models are relatively simple because the example data are highly regular and contain only 

a single object and link type. More heterogeneous data might require models with longer and 

more complex paths among objects. For example, paths connecting auto correlated objects might 

pass through one or more intervening objects of specified types. However, the simplicity of this 

example allows us to focus on the critical aspects of learning and inference in relational data. 

Collective inference has been a small but active area of research in relational learning for at least 

six years, since the publication of Chakrabarti, Dom, and Indyk's detailed study of hypertext 

categorization strategies. Several more recent studies of collective inference have extended and 

broadened this work . Finally, some work has extended the basic paradigm of collective 

inference to incorporate selecting among a range of possible actions. For example, Domingos 

and Richardson's work on mining the network value of customers incorporates collective 

inference into a larger approach to "viral marketing". Table 1 summarizes the types of models 

evaluated in seven key papers. 

Many studies of collective inference have reported large reductions in error when the method is 

applied. For example, Chakrabarti et al report large reductions in classification error, including 

one drop in error of over 70% (from 68% to 21%). In previous work, two of the authors reported 

significant accuracy gains from a relatively simple technique for collective inference .  

Macskassy and Provost show how models that consider only autocorrelation in class labels 

(equivalent to CI without attributes) can perform very well when only a small fraction of the 

class labels are known . 
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Several studies have also pointed out that collective inference of various types can also reduce 

accuracy. For example, Chakrabarti et al. [1] discuss an experiment where including relational 

information about web pages actually reduces accuracy. They hypothesize that the additional 

features meant that the learning and inference scheme was "overwhelmed by the signal to noise 

ratio". 

Based on these results, it appears clear that collective inference is capable of significantly 

improving probabilistic inferences in relational data. Important questions remain, however: why 

and under what circumstances does collective inference improve the accuracy of relational 

models? 

One reasonable explanation is that the power of collective inference lies merely in the larger 

feature-space provided by models such as CI. These models consider features that their less 

expressive cousins (e.g., R1) do not. In experiments below, we will show that this explanation is 

inadequate to explain the power of collective inference. 

Instead, we show that methods for collective inference benefit from a clever factoring of 

the space of dependencies. The models CI and RCI have substantially smaller parameter spaces 

than the model R2, yet they can benefit from information propagated from outside of their local 

neighborhood. Predictions about the class label C on other objects essentially “bundle 

information” about the graph beyond the immediate neighborhood. In addition, collective models 

can make use of known class labels (e.g., known topics of web pages) to improve inferences 

about unknown labels. This provides a new, and often highly reliable, additional feature for 

learning and inference. 

This increased representational power is purchased with only an incremental increase in 

the parameter space. In this way, CI and RCI emulate other robust techniques such as simple 

Bayesian classifiers and linear regression models. Even when their assumptions are violated, CI 

and RCI often perform well. 

MATERIAL AND METHOD 

To evaluate different models and inference methods, we conducted experiments with both real 

and synthetic data. 

Yeast Protein Experiments 
 

Our empirical experiments considered relational data about the yeast genome, containing 

information about 1,243 genes and 1,734 interactions among their associated proteins 

(http://www.cs.wisc.edu/~dpage/kddcup2001/). Both gene location and function are auto- 
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correlated in this dataset [11] so we expect it to be a good test bed for investigating the relative 

performance of the various relational models. 

The learning task was to predict gene localization in the cell. There are 15 locations ranging from 

mitochondria to plasma membrane, with a default error rate of 0.57. In addition to gene location, 

each gene has 13 boolean attributes indicating gene function. Each gene may have as many as six 

functions. For non-collective models, we used relational Bayesian classifiers (RBCs) [13] to 

predict gene location given the function attributes. The Intrinsic model considered the 13 

function attributes on the genes themselves. The R1 model added another 13 function attributes 

for genes one link away (through interactions) for a total of 26 attributes. The R2 model then 

added another 13 attributes for genes two links away, for a total of 39 attributes. For collective 

models, we used relational dependency networks (RDNs) with RBCs to represent the  

component conditional probability distributions. The CI model considered the location attribute 

of genes one link away, in addition to the 13 function attributes of the genes in isolation. The 

RCI model added in the 13 function attributes for genes one link away for a total of 27 attributes. 

The RDNs used 250 Gibbs iterations and all models used Laplace correction for zero-values. 

To compare the five approaches, we evaluated zero-one loss over ten-fold cross 

validation trials. We report average error over the ten folds and use two-tailed, paired t-tests to 

assess the significance of the results. 

Synthetic Experiments 
 

To generate synthetic data, we extended the example presented in section 2.1. We generated data 

with a regular two dimensional lattice structure. The first and last two rows and columns make 

up the “frame” of the lattice. Objects in the frame are not used to train models, and objects in the 

frame are not used for loss estimates, although inference is performed over all objects in the 

lattice, including the frame. Thus, training or test sets of size S2 correspond to a lattice of (S+4) 

× (S+4) objects, and models are trained or evaluated on the S2 objects in the core of the lattice. 
 

Each object in a given dataset contains the same set of attributes. In every dataset, objects 

contain a class label C and a single attribute A1, that is correlated with C. Depending on dataset 

generation parameters, objects may also contain up to 14 additional attributes, none of which are 

correlated with C. We generated the values of attributes and class labels in two ways, which we 

label “relational” and “collective”. Both use parameters given in Table 2. For collective data 

generation, we begin by assigning each object in the lattice an initial class label with P(C=1) = 

0.5. We then perform Gibbs sampling over the entire lattice. The class labels assigned to each 

object after 200 iterations are used as the final labels. To assign class labels during Gibbs 

sampling, we use a manually specified model that assigns class labels to each object based on the 

class values of neighboring objects one link away. The parameters of this model are varied to 
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produce different levels of autocorrelation among neighboring class labels. Once class labels are 

assigned, a value for the A1 attribute is randomly drawn from a distribution conditioned on the 

class label of the object — derived from the P(C|A1) and P(A1) data generation parameters. 

Finally, random values are assigned to all other attributes with P(Ai) = 0.5. Once a dataset is 

generated, we measure the proportion of objects with positive class labels, and any dataset with a 

value outside the range [0.4, 0.6] is discarded and replaced with a new dataset. This ensures 

consistency in P(C) across datasets and reduces variance in estimated model performance. 

Table 1 Data Generation Parameters 
 

For relational data generation, we begin by training the parameters of an R2 model on a large 

dataset consisting of 100 lattices of 1000 objects each. The attributes and class labels on the 

objects of each lattice are determined by the collective data generation method described above. 

We also train a univariate model of P(Ai) for each attribute Ai. We create a lattice of objects in 

the usual way, assign attribute values randomly to each object based on the learned model of 

P(Ai), and assign class labels to each object based on the attribute values of itself and all 

neighboring objects up to two links away using the learned R2 model. 

We measured bias and variance for each model using the decomposition defined for 

squared-loss by Domingos . Loss is decomposed into three factors: bias, variance and noise. 

CONCLUSION 

Although calculation of variance is straightforward for relational data, calculation of bias 

is not. Fortunately for the synthetic data experiments, we know the probabilities from the 

generative model and can use these as the optimal predictions. Bias and variance estimates are 
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calculated for each test example using 10 different training sets and averaged over the entire test 

set. This was repeated for 20 test sets to calculate average test set bias and variance. 
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